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Destabilization of a vortex by acoustic waves
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The linear stability of a circular vortex interacting with two plane acoustic waves
propagating in opposite directions is investigated. When the wavelength is large com-
pared to the size of the vortex, the core is subjected to time-periodic compressions and
strains. A stability analysis is performed with the geometrical optics approximation,
which considers short-wavelength perturbations evolving along the trajectories of the
basic flow. On the vortex core, the problem is reduced to a single Hill–Schrödinger
equation with periodic or almost-periodic potential, the solution to which grows
exponentially when parametric resonances occur. On interacting with the acoustic
waves, the circular vortex is thus unstable to three-dimensional perturbations.

1. Introduction
Hydrodynamic instabilities in compressible flows remain relatively not well under-

stood for at least two reasons: first because only few equilibrium basic-state solutions
of the equations of motion are known, and secondly because the perturbation prob-
lem is more difficult than in the incompressible case, as it involves an additional
equation. Furthermore, as in the incompressible case, most of the hydrodynamic sta-
bility theories concern basic flows with relatively simple topology and some particular
symmetries, allowing simplification of the spectral problem (Drazin & Reid 1981;
Saffman 1992; Huerre & Rossi 1998).

Nevertheless, the theory of short-wavelength perturbations in inviscid flows provides
a powerful tool for linear stability of complex flows. There has been significant progress
with the fundamental works of Eckhoff (1981) and Lifschitz & Hameiri (1991), who
proposed a method based on the WKB approximation which allows local stability
criteria to be derived for any incompressible or compressible time-dependent flows
(see also Dobrokhotov & Shafarevich 1992; Vishik & Friedlander 1993). Instead of
characterizing the discrete eigenmodes with large wavenumbers (Moore & Saffman
1975; Tsai & Widnall 1976; Leibovich & Stewartson 1983; Bayly 1988; Le Duc &
Leblanc 1999; Eloy & Le Dizès 2000; Sipp & Jacquin 2000) or constructing localized
solutions corresponding to the continuous spectrum (Lifschitz 1991; Lebovitz &
Lifschitz 1992) as performed in ideal magnetohydrodynamics (see Lifschitz 1989), the
geometrical optics stability theory of Eckhoff (1981) and Lifschitz & Hameiri (1991)
consists in solving the initial value problem corresponding to localized initial data. By
expanding the solution in a WKB form, the linearized Euler equations are reduced
to a system of ordinary differential equations evolving along the trajectories of the
basic flow. As in geometrical optics, this system consists of the eikonal equation for
the wave vector and the transport equations for the perturbation amplitude, which
may be solved often analytically, otherwise by an elementary numerical integration.
An unbounded solution of the transport equations is sufficient to prove instability.
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The geometrical optics stability theory is now a standard tool, and in incompressible
flows, the results are numerous. Let us mention some applications to centrifugal-type
instabilities (Bayly 1988; Lifschitz & Hameiri 1993; Sipp & Jacquin 2000), stagnation
points (Friedlander & Vishik 1991; Lifschitz & Hameiri 1991; Leblanc 1997), chaotic
flows (Friedlander & Vishik 1992; Lifschitz 1994; Reyl, Antonsen & Ott 1997),
strained vortices (Bayly, Holm & Lifschitz 1996; Sipp & Jacquin 1998; Le Dizès &
Eloy 1999), finite-amplitude waves (Fabijonas, Holm & Lifschitz 1997; Miyazaki &
Adachi 1998), or rotating flows (Lebovitz & Lifschitz 1996; Leblanc & Cambon 1998;
Sipp, Lauga & Jacquin 1999; Le Dizès 2000b). This list of references is not exhaustive.

Less is known on the stability of compressible flows, except for steady basic
states with circular symmetry. With a normal mode approach, Gans (1975), Warren
(1975) and Lalas (1975) derived necessary conditions for instability. With the short-
wavelength approximation, Eckhoff & Storesletten (1978, 1980) derived sufficient
instability criteria, extending considerably Rayleigh’s criterion for centrifugal instabil-
ity and anticipating the incompressible result of Leibovich & Stewartson (1983) for
vortex breakdown (see the discussion in Eckhoff 1984). Lebovitz & Lifschitz (1992)
studied localized instabilities in rotating fluid masses with both a description of the
continuous spectrum and the geometrical optics method. Le Duc & Leblanc (1999)
gave the asymptotic structure of the unstable eigenmodes with large axial wavenum-
bers for the compressible Rayleigh criterion. For steady flows with complex topology,
Lifschitz & Hameiri (1991) showed that any steady subsonic flow of a compressible
ideal gas having a non-degenerate point of stagnation is unstable unless this point lies
on the axis of rigid body rotation. In other words, it means that any elliptical vortex
core or hyperbolic stagnation point is locally unstable; for instance, the compressible
Hill’s spherical vortex (Moore & Pullin 1998) is linearly unstable. On the other hand,
any circular vortex core in a steady flow is locally stable. Complementary to inertial
modes, acoustic modes may also be responsible for instability (Broadbent & Moore
1979) or algebraic transient growth (Chagelishvili et al. 1997; Simone, Coleman &
Cambon 1997).

In time-dependent compressible flows at low Mach number, Mansour & Lundgren
(1990) and Leblanc & Le Penven (1999) found parametric instabilities in unbounded
circular or elliptical vortices that were periodically compressed. Although these time-
periodic compressible flows are not physically realistic, an interesting question is
whether they could mimic the behaviour of a smooth localized vortex interacting
with a long-wavelength acoustic wave.† Since the works of Kraichnan (1953) and
Lighthill (1953), it is known that sound propagation is modified by turbulence and
vortical flows (see also Landau & Lifshitz 1959). Acoustic waves are also used to
excite, with loudspeakers, instabilities in mixing layers or jets (see for instance Ho &
Huerre 1984). Recently, Lund & Rojas (1989) proposed a method using ultrasound
to characterize a turbulent flow, and various experimental techniques have been
proposed (Dernoncourt, Pinton & Fauve 1998; Labbé & Pinton 1998; Oljaca et al.
1998; Manneville et al. 1999).

Scattering of sound waves by a smooth circular vortex has also been studied
analytically and numerically (Colonius, Lele & Moin 1994; Reinschke, Möhring &
Obermeier 1997). In a recent work, Ford & Llewellyn Smith (1999) performed an
asymptotic analysis of wave scattering by a vortex, and gave a detailed description of
the flow in both outer and inner regions, corresponding respectively to the wave and
the vortical region. Their solution, derived in the Born limit, i.e. the wavelength is

† This question was raised by an anonymous referee of Leblanc & Le Penven (1999).
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Figure 1. Sketch of a circular vortex of characteristic size L and velocity distribution V (r), inter-
acting with two acoustic waves with wavelength λ, and pulsation ±ω. The Born limit corresponds
to λ�L.

large compared to the size of the vortex, is in good agreement with direct numerical
simulations of Colonius et al. (1994). Their results will help us to give a partial answer
to the problem posed above: the superposition of two acoustic waves with opposite
directions of propagation (figure 1) may destabilize a vortex, by compressing and
straining periodically the vortex core.

The paper is organized as follows: in § 2, the geometrical optics stability theory
is recalled, and it is shown how to reduce the problem to a single Hill–Schrödinger
equation. Some illustrative effects of local compressions and strains on vortex cores
are analysed in § 3, and a complete description of the corresponding parametric
resonances is given. Section 4 details the destabilization of circular vortices by a pair
of acoustic waves, and the results are applied to a Rankine vortex.

2. The geometrical optics stability theory
2.1. Basic equations

Let [U , R, P ](x, t) be the velocity, density and pressure fields of the subsonic com-
pressible flow of an ideal gas filling a domain Dt bounded or not. The flow is governed
by the compressible Euler equations:

DR

Dt
+ R∇ ·U = 0,

DU

Dt
+

1

R
∇P = 0,

DP

Dt
+ γP∇ ·U = 0, (2.1)

where γ > 1 is the constant ratio of specific heats, and D/Dt = ∂/∂t + U · ∇
is the material derivative. The last equation for pressure is deduced from entropy
conservation DS/Dt = 0, with S = P/Rγ for a perfect gas. When Dt is bounded, the
flow is subject to slip boundary conditions for the velocity field.

Let U, R, P, L and T denote respectively some characteristic velocity, density,
pressure, length and time scales of the flow, and let [U ′, R′, P ′](x′, t′) denote the
corresponding dimensionless variables. Clearly, the ratio between the convective time
scale L/U and the natural time scale T defines a Strouhal number that appears in
the dimensionless equations. Here, we assume that the Strouhal number is of order
unity, so that unsteady terms balance convective ones. Dropping the primes, the
dimensionless Euler equations are

DR

Dt
+ R∇ ·U = 0, (2.2)
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DU

Dt
+
∇P
γM2R

= 0, (2.3)

DP

Dt
+ γP∇ ·U = 0, (2.4)

whereM = U/C is the characteristic Mach number of the flow, and C =
√
γP/R its

characteristic sound celerity.
Taking the curl of the momentum equation (2.3), the dimensionless compressible

Helmholtz equation for the vorticity W = ∇×U is (Saffman 1992)

D

Dt

(
W

R

)
= L

(
W

R

)
+
∇R × ∇P
γM2R3

, (2.5)

where the tensor L is defined by L = ∇U .

2.2. Short-wavelength perturbations

Adding a small perturbation [u, %, p](x, t) to the basic flow described by [U , R, P ](x, t),
injecting into Euler equations, and neglecting nonlinear terms yields a linear system of
differential equations, that may be rewritten by using Eckart’s dimensionless variables
[m, n](x, t) defined by (Eckhoff & Storesletten 1978)

% =MR

C
(m+ n), p = γMRCn, (2.6)

where C =
√
P/R is the dimensionless local sound celerity of the basic flow.

In terms of Eckart’s variables, the linear dimensionless system is

Du

Dt
+ L u+

C

M
(
−∇P
γP

m+ ∇n+ (γ − 1)
∇P
γP

n− ∇C
C
n

)
= 0, (2.7)

Dm

Dt
+ (γ − 1)

tr L

2
m+

C

M
(∇R
R
− ∇P
γP

)
· u = 0, (2.8)

Dn

Dt
+ (γ − 1)

tr L

2
n+

C

M
(
∇ · u+

∇P
γP
· u
)

= 0, (2.9)

where D/Dt = ∂/∂t+U ·∇ is the material derivative following the basic flow, L = ∇U
is the basic velocity gradient tensor which verifies: tr L = ∇ ·U .

Following Eckhoff (1981) and Lifschitz & Hameiri (1991), we seek an asymptotic
solution of the linear system of the WKB (Wentzel–Kramers–Brillouin) form:

[u, m, n](x, t) = eiφ(x,t)/ε[ũ, m̃, 0](x, t) + O(ε), (2.10)

where φ is a real-valued phase field and ε � 1 is a small real parameter at our
disposal. Injecting (2.10) into (2.7), (2.8) and (2.9), and equating the various orders in
ε yields, at leading order O(1/ε): Dφ/Dt = 0 and k · ũ = 0, where k = ∇φ is the wave
vector. Advection of φ gives

Dk

Dt
= −LTk, (2.11)

where T stands for transpose.
At O(1), (2.7) and (2.8) give respectively

Dũ

Dt
=

(
2kkT

|k|2 − I
)
L ũ+

C

M
(
I − kkT

|k|2
) ∇P
γP

m̃, (2.12)
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Dm̃

Dt
= (1− γ) tr L

2
m̃+

C

M
(∇P
γP
− ∇R

R

)
· ũ. (2.13)

Higher-order corrections to (2.10) may be computed (Lifschitz & Hameiri 1991).

2.3. Lagrangian description

Equations (2.11), (2.12) and (2.13) involve only a material derivative following the
basic flow D/Dt. Using a Lagrangian representation x = x(X , t), where X = x(X , 0),
and introducing the trajectories of the basic flow, the system of partial differential
equations (2.11), (2.12) and (2.13) is transformed into a system of ordinary differential
equations evolving along the trajectories (Lifschitz & Hameiri 1991). Before this, we
define [a, b](X , t) as

a =
√
Jũ, b =

√
Jm̃, (2.14)

where J(X , t) = det(∂x/∂X ) is the solution of dJ/dt = J∇ ·U with J(X , 0) = 1.
The complete system of ordinary differential equations is then

dx

dt
= U , (2.15)

dk

dt
= −LTk, (2.16)

da

dt
=

(
2kkT

|k|2 − I
)
L a+

tr L

2
a+

C

M
(
I − kkT

|k|2
) ∇P
γP

b, (2.17)

db

dt
=

C

M
(∇P
γP
− ∇R

R

)
· a+ (2− γ) tr L

2
b. (2.18)

In the geometrical optics approximation, (2.15) corresponds to the equation of rays,
which are trajectories in the present case, (2.16) is the eikonal (or Hamilton–Jacobi)
equation, whereas (2.17) and (2.18) are the transport (or Liouville) equations. Initial
conditions [k, a, b](X , 0) may be constructed such that k(X , 0) · a(X , 0) = 0, ensuring
k · a = 0 at any time (Lifschitz & Hameiri 1991).

As proved by Eckhoff (1981) and Lifschitz & Hameiri (1991), a sufficient con-
dition for instability is the unbounded growth of |a(X , t)| or |b(X , t)| along a given
trajectory X .

2.4. Reduction to a Hill–Schrödinger equation

We are particularly interested in the stability of unsteady vortices for which the core
position x0 is steady in the frame of reference, i.e. such that U (x0, t) = 0. Such points
are stagnation points, and are particular trajectories of the basic flow, for which
dx0/dt = 0. At the stagnation point, acceleration is zero since d2x0/dt

2 = 0, so that
the momentum conservation equation (2.3) gives, at the stagnation point,

∇P = 0, (2.19)

whereas mass (2.2) and entropy (2.4) conservations give respectively

1

R

dR

dt
=

1

γP

dP

dt
= −tr L, (2.20)

since tr L = ∇ ·U .
Now, suppose that the basic flow is planar and two-dimensional in the plane (ex, ey).

Let L denote now the local 2× 2 velocity gradient tensor. The basic vorticity W ez is
a solution of the two-dimensional compressible Helmholtz equation which is on x0,
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from (2.5) and (2.19),

d

dt

(
W

R

)
= 0. (2.21)

As done by Bayly et al. (1996) for an incompressible flow, let us now show that the
study of the transport equations (2.17) and (2.18) at x0 may be reduced to a single
Hill–Schrödinger equation. Let ξ and v denote respectively the projection of the wave
vector k and of the amplitude a on the (ex, ey)-plane, and µ = k · ez . Let H be the
2× 2 tensor defined by

H = L

(
0 1

−1 0

)
. (2.22)

Assuming that ξ 6= 0 and µ 6= 0, we introduce the new variables

p =
|k|
|ξ|
√
R ξ · v, q =

|k|
|ξ|
k × a√
R
· ez. (2.23)

After some manipulations, we get the following system of ordinary differential equa-
tions:

dp

dt
=

(
d

dt
ln
|ξ|
|k|
)
p+

(
2Rµ2

|ξ|2|k|2 ξ
THξ

)
q, (2.24)

dq

dt
= −

(
W

R

)
p−

(
d

dt
ln
|ξ|
|k|
)
q. (2.25)

Taking the time derivative (2.25) and taking into account (2.21) and (2.24), we get
the following Hill–Schrödinger equation:

d2q

dt2
+ Q(x0, t)q = 0, (2.26)

where the potential Q(x0, t) is similar to the incompressible case (Bayly et al. 1996):

Q(x0, t) =
2Wµ2

|ξ|2|k|2 ξ
THξ +

d2

dt2
ln
|ξ|
|k| −

(
d

dt
ln
|ξ|
|k|
)2

. (2.27)

It may be verified that when R(x0, t), |ξ(x0, t)| and |k(x0, t)| are bounded in time
(which is generally the case in vortex cores), the unbounded growth of |q(x0, t)| is
sufficient for instability. As mentioned before, q(x0, t) is not defined when µ = 0, but
this case corresponds to two-dimensional short-wavelength perturbations, that may
be shown to be stable when |k(x0, t)| is bounded.

In planar homentropic flows, entropy is spatially uniform so that (2.4) is replaced
by P = Rγ . Linearization yields p = γC2%, so that m = 0 and b = 0. The immediate
consequence is that the Hill–Schrödinger equation (2.26) with (2.27) is valid on any
trajectory X (and not only at a stagnation point x0).

3. Illustrative examples of parametric resonances
3.1. Circular compressions

Before proceeding to the core of the paper, i.e. the stability analysis of the interaction
between a circular vortex and acoustic waves, it is useful to illustrate the basic
mechanisms of instability by some explicit examples. For a given planar flow with
stagnation point x0, we see from (2.21) that W (x0, t) and R(x0, t) are proportional;
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Figure 2. Sketch of the local flows near the vortex cores for circular (a) and axial (b) compressions:
streamline of the steady vortex cores (solid lines) and envelopes of the trajectories in the time-periodic
case (dashed lines).

we chose W (x0, t) = R(x0, t). We give now some local solutions that satisfy the local
equilibrium constraint (2.20) and for which the eikonal equation (2.11) admits exact
solutions.

The local velocity gradient tensor,

L(x0, t) =
1

2

 −
1

R

dR

dt
−R

R − 1

R

dR

dt

 , (3.1)

satisfies (2.20) and (2.21) by construction, so that it is a local solution of the equations
of motion. Assuming the periodic compressions

R(x0, t) = 1 + δ cos(ωt), (3.2)

with pulsation ω > 0 and amplitude 0 6 δ < 1, the flow corresponds locally to a
circular vortex core subjected to isotropic circular compressions in the (ex, ey)-plane
(figure 2).

With (3.1), the eikonal equation admits the following solution:

k(x0, t) =
(√

1− µ2
√
R cos τ,

√
1− µ2

√
R sin τ, µ

)T
, τ(t) =

∫ t

0

R

2
dt, (3.3)

where 0 6 µ 6 1 characterizes the three-dimensionality of the perturbation: when
µ = 0, the perturbation is planar and two-dimensional since k · a = 0; otherwise it is
three-dimensional. Thus, the short-wavelength stability problem is partially solved. It
remains to characterize the large-time behaviour of the solution the Hill–Schrödinger
equation (2.26). This is performed below for weak amplitudes.

Indeed, when δ � 1, the local velocity gradient tensor (3.1), may be expanded in
powers of δ as

L(x0, t) = L0 + δL1(t) + O(δ2), (3.4)

where

L0 =
1

2

(
0 −1

1 0

)
, (3.5)

which corresponds to an unperturbed circular vortex core with unit vorticity, and

L1(t) =
1

2

(
ω sin(ωt) − cos(ωt)

cos(ωt) ω sin(ωt)

)
, (3.6)

which is a compressible rotational correction.
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The corresponding potential in the Hill–Schrödinger equation (2.26) may be ex-
plicitly computed and gives, when δ � 1,

Q(x0, t) = Q0 + δQ1(t) + O(δ2), (3.7)

where Q0 = µ2 and

Q1(t) = µ2

(
µ2 + 1− ω2

2

)
cos(ωt). (3.8)

When δ = 0 (no compression), the Hill–Schrödinger equation (2.26) admits an
exact solution for q(x0, t) which is periodic in time with pulsation µ, so that the
steady circular vortex core is stable, in accordance with Lifschitz & Hameiri (1991).
Nevertheless, it is worth noting that these local periodic short waves correspond
in fact to Kelvin waves propagating inside the vortex, and we will see that weak
compressions and/or strains may be responsible for parametric resonances.

3.2. A Mathieu equation

Thus, for pure circular compressions, (2.26) is (at order δ)

d2q

dt2
+ µ2

{
1 + δ

(
µ2 + 1− ω2

2

)
cos(ωt)

}
q = 0, (3.9)

which may be recognized as a standard Mathieu equation (Magnus & Winkler 1966;
Bender & Orszag 1978), the prototype of the parametric resonance equation. To order
δ, corresponding solutions are periodic and stable (bounded), except near

|µ| = |ω|
2
, (3.10)

which corresponds to the first parametric resonance of the Mathieu equation. Since
0 < µ < 1 and ω > 0, we expect instability when

0 < ω < 2. (3.11)

A standard multiple-scale asymptotic analysis (Bender & Orszag 1978) may be
carried out in order to characterize the first resonance (3.10); we omit the analysis
here because it is completely standard. Near (3.10), the most unstable solution is

q(x0, t) = q0 exp

{
ω

8

(
1− ω2

4

)
δt

}
cos

(
ωt

2
+ φ0

)
+ O(δ), (3.12)

where q0 and φ0 are some initial constants. Since 0 < µ < 1, the first parametric
resonance occurs as expected when 0 < ω < 2. The cases µ = 0 (two-dimensional
perturbations) and µ = 1 are stable.

3.3. Axial compressions

Let us now turn to a more complex situation where the vortex is compressed along a
given axis (say ex). As previously, it may be verified that the flow described locally by

L(x0, t) =

 − 1

R

dR

dt
−Ω
R

ΩR 0

 , Ω(t) =
R2

R2 + 1
, (3.13)

verifies the local equilibrium constraints (2.20) and (2.21). With periodic compressions
given by (3.2), the flow corresponds to a vortex core with locally circular streamlines
when δ = 0 (no compression), and otherwise, as represented on figure 2, trajectories
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are inscribed into two elliptical envelopes, so that it is a circular vortex core which is
axially compressed along the ex-axis.

Once again, the eikonal equation may be locally solved (Leblanc & Le Penven
1999):

k(x0, t) =
(√

1− µ2R cos τ,
√

1− µ2 sin τ, µ
)T

, τ(t) =

∫ t

0

Ω dt. (3.14)

For arbitrary amplitudes of compressions, δ ∼ O(1), the solution of (2.26) may be
studied numerically with Floquet theory when Q(x0, t) is periodic or with a Prufer
transformation when Q(x0, t) is almost periodic (Craik & Allen 1992; Bayly et al.
1996; Leblanc & Le Penven 1999), but no definitive theorems exist to characterize the
stability characteristics of such Hill–Schrödinger equations, except tests for stability
(Magnus & Winkler 1966).

When δ � 1, the local velocity gradient (3.13) is

L(x0, t) = L0 + δL1(t) + O(δ2), (3.15)

where L0 is given by (3.5), and

L1(t) =
1

2

(
ω sin(ωt) − cos(ωt)

cos(ωt) ω sin(ωt)

)
+

1

2

(
ω sin(ωt) cos(ωt)

cos(ωt) −ω sin(ωt)

)
. (3.16)

The first term in the right-hand side corresponds to the compressible rotational
correction (3.6). The second term is a pure incompressible irrotational correction: it
may be related to a time-periodic straining field studied numerically by Bayly et al.
(1996).

The potential of the Hill–Schrödinger equation is, after some algebra,

Q(x0, t) = Q0 + δQ1(t) + O(δ2), (3.17)

where Q0 = µ2 as before, and

Q1(t) = µ2

(
µ2 + 1− ω2

2

)
cos(ωt) + µ2

(
µ2

2
− ω2 + 5

4
− ω

)
cos(1 + ω)t

+µ2

(
µ2

2
− ω2 + 5

4
+ ω

)
cos(1− ω)t. (3.18)

We see from the above formula that the first term of the right-hand side corresponds
to (3.8), i.e. to a pure compressible effect, whereas the remaining terms are related to
the irrotational incompressible straining field.

3.4. Almost-periodic potentials

Now when δ � 1, the stability analysis of the vortex compressed axially is reduced
to (at order δ)

d2q

dt2
+ {Q0 + δQ1(t)}q = 0, (3.19)

where Q0 = µ2 and Q1(t) is given by (3.18). This case requires a careful analysis.
Indeed, Q1(t) is either periodic (when ω is a rational number), or almost periodic
(when ω is irrational). Thus, the resulting equation is no longer a Mathieu equation.
Fortunately, the principal resonances may be studied with a multiple-scale analysis.

For small amplitudes, Craik & Allen (1992) obtained a similar equation for time-
periodic incompressible linear flows, and argued that each forcing term in the potential
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Figure 3. Rescaled growth rates s = σ/δ of the various principal parametric instabilities in the case
of axial compressions given by expressions (3.22), (3.23) and (3.24). The resonance defined when
0 < ω < 2 (solid line) also corresponds to the case of circular compressions.

(3.18) is responsible for a region of instability centred on half its frequency. In short,
it means that three different resonances arise from

|µ| = |ω|
2
, |µ| = |1 + ω|

2
, |µ| = |1− ω|

2
. (3.20)

Since 0 < µ < 1 and ω > 0, this means that the leading-order parametric instabilities
cannot happen unless

0 < ω < 3. (3.21)

However, this qualitative argument gives no indication on the growth rates. So we use
multiple-scale asymptotics to characterize precisely the three parametric instabilities.
Furthermore, various resonances may interact for some particular values of the
parameters. Details of the calculations are given in Appendix A and the results may
be summarized as follows (to order δ).

The resonance ω = 2µ happens when 0 < ω < 2, and the perturbation grows
exponentially with growth rate

σ =
δω

8

(
1− ω2

4

)
, (3.22)

exactly as for the circular compressions. The resonances 1 ± ω = 2µ both happen
when 0 < ω < 1 with respective growth rates:

σ =
δ

64
(1± ω)(3± ω)2. (3.23)

The resonance ω − 1 = 2µ happens for 1 < ω < 3, and the corresponding growth
rate is

σ =
δ

64
(ω − 1)(ω − 3)2. (3.24)

These resonances are plotted in figure 3. Some particular cases may arise when two
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of these bandwidths interact. These correspond to ω = 1
2

or ω = 1 with some
particular orientations µ of the wave vector, and they are analysed in detail in
Appendix A. However, they do not affect the most unstable perturbations. Finally, as
noted previously, two-dimensional perturbations (µ = 0) are stable, whereas the most
unstable configuration is reached for spanwise wave vectors (µ = 1) with

ω = 1, σ = δ/2. (3.25)

These results complete the description of the resonances at weak amplitude obtained
numerically by Leblanc & Le Penven (1999) for a compressed vortex at low Mach
number.

To conclude, it is worth mentioning that in an incompressible flow, the resonances
of a circular vortex which experiences weak periodic irrotational strains may be
deduced from the above results: resonances correspond to (3.23) and (3.24).

4. Destabilization of a circular vortex by acoustic waves
4.1. The scattering of a wave by a circular vortex

Since time-periodic compressions are responsible for three-dimensional parametric
instabilities in a steady vortex core, it is natural to ask whether an acoustic wave may
destabilize a vortex. The interaction of sound waves with a vortex, i.e. the scattering
of waves by a vortical region, is a classical problem in aeroacoustic theory: when a
single plane wave travels along the ex-axis in the positive x-direction and propagates
through a vortical region, the acoustic field is significantly modified, and the far field
has been characterized successfully both numerically and analytically (Colonius et al.
1994; Reinschke et al. 1997; Ford & Llewellyn Smith 1999).

When the wavelength λ of the incident acoustic wave is large compared to the
characteristic size of the vortex L, i.e. in the Born limit λ � L, Ford & Llewellyn
Smith (1999) gave a description of the resulting flow both in the wave region (the
outer region) and in the vortical region (the inner region). Their construction is
asymptotically consistent since matching of the flows in the two regions is ensured.
Furthermore, their results have been compared successfully to the direct numerical
simulations of Colonius et al. (1994). In their analysis, the flow is assumed homen-
tropic, with small Mach number M = U/C � 1, where U is a characteristic velocity
of the vortex, and C is the sound celerity of waves propagating in a flow at rest.
The incident wave is characterized by the wavenumber k and pulsation ω = Ck,
which is assumed of the same order as the characteristic time scale of the vortex, i.e.
ω ∼ U/L ∼ O(1). Thus, the Strouhal number ωL/U is assumed to be O(1), so that
it may be verified that L ∼Mλ.

4.2. Solution in the vortex region

Ford & Llewellyn Smith (1999) solved the full compressible Euler equations for
an homentropic flow in the inner and outer regions with asymptotic matching, for
an incident plane wave with dimensionless amplitude δ. In the vortical region, the
dimensionless velocity fields is denoted U+(x, t) (the + is used to characterize the flow
perturbed by a wave propagating in the positive x-direction). It is†

U+(x, t) = U+
0 (x) + δU+

1 (x, t) + O(δ2), (4.1)

† Note that unlike our notation, the flow in the vortical region is described by lowercase letters
in Ford & Llewellyn Smith (1999), whereas capital letters were reserved for the outer region. No
ambiguity is possible here, since we are only interested in the vortical region.
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where

U+
0 (x) = V (r)eθ = rΩ(r)eθ, (4.2)

which corresponds to a circular vortex centred at the origin of the frame. The core
vorticity is assumed to be unity (singular point vortices are excluded from the analysis).
We assume furthermore that the vortex is stable to three-dimensional compressible
centrifugal instabilities (Eckhoff & Storesletten 1978; Le Duc & Leblanc 1999).

The O(δ) correction is expanded as

U+
1 (x, t) = U+

01(x, t) +MU+
11(x, t) +M2U+

21(x, t) + O(M3 lnM), (4.3)

where U+
01, U

+
11 and U+

21 may be deduced from (3.6 b), (3.11), (4.10), (4.14) and (4.16)
in Ford & Llewellyn Smith (1999). They are

U+
01 = 0, U+

11 = ez × ∇Ψ+
11, U+

21 = ∇Φ+
21 + ez × ∇Ψ+

21, (4.4)

where

Ψ+
11(r, θ, t) = −r

(
sin θ + i

Ω

ω
cos θ

)
e−iωt, (4.5)

Φ+
21(r, θ, t) = 1

4
iωr2e−iωt, (4.6)

Ψ+
21(r, θ, t) =

1

2

(
r2Ω − Γ

2π

)
e−iωt + g2,ω(r)ei(2θ−ωt) + g−2,ω(r)ei(−2θ−ωt), (4.7)

where Γ is the constant total circulation of the vortex, and the functions gn,ω(r) are
solutions of the radial Rayleigh equation:

d2

dr2
gn,ω +

1

r

d

dr
gn,ω −

(
n2

r2
− n

r(ω − nΩ)

dW

dr

)
gn,ω = 0, (4.8)

which may encounter singular critical layers at radii r0 where ω = nΩ(r0) (see Drazin
& Reid 1981). These singularities may be regularized by viscosity or nonlinearity
(Reinschke et al. 1997; Le Dizès 2000 a). For our purpose, we assume that the critical
layers for n = ±2 (if they exist) are outside the vortex core r0 = 0, i.e.

ω 6= 1, (4.9)

since Ω = 1
2

at r = 0 by assumption (unit vorticity in the core), and ω > 0.
Furthermore, according to Ford & Llewellyn Smith (1999), solution (4.7) is no longer
valid when ω corresponds to a two-dimensional eigenfrequency of the vortex. Higher-
order corrections to (4.3) and expressions for pressure and density may be found in
Ford & Llewellyn Smith (1999).

Thus, at O(M), we see that the first effect of the incident wave on the vortex is to
move its centre with a time-periodic motion of translation: this may be clearly seen
by taking the real part of U+

11 expressed at r = 0. This gives

U+
11(0, θ, t) = cos(ωt)ex − 1

2ω
sin(ωt)ey. (4.10)

It will be shown below that the O(M2) effect of the acoustic wave is to compress
and strain time periodically the vortex core. Nevertheless, the instability mechanisms
exposed previously are not valid here, since the position of the vortex core is no
longer steady, according to (4.10). Then, by superposing a second acoustic wave
propagating along the ex-axis, but with opposite direction (figure 1), we may expect
that the motion of translation U+

11 will be annihilated, so that parametric resonances
should occur.
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4.3. The case of two waves

The analysis of Ford & Llewellyn Smith (1999) could be completely redone when the
leading-order solution in the outer wave region is the superposition of a first wave
propagating along the ex-axis in the positive x-direction and a second wave propagat-
ing along the ex-axis in the negative x-direction. However, this is not necessary since
the solution of Ford & Llewellyn Smith (1999) corresponds to the linear correction
O(δ) to the vortex flow. Thus, the simultaneous effects of the two waves on the vortex
is simply the sum of the O(δ) terms of each solution.

Furthermore, the solution corresponding to the wave propagating in the negative
x-direction may be deduced from the results of Ford & Llewellyn Smith (1999) by
using the following transformation for each scalar field:

(ω, k)→ (−ω,−k), (r, θ)→ (r, θ + π), (x, y)→ (−x,−y), (4.11)

which means simply that the solution for the wave propagating in the negative x-
direction is obtained by symmetry with respect to the origin, together with ω → −ω.

The leading-order unperturbed circular vortex remains unchanged by this transfor-
mation. For the O(δ) corrections, we get from (4.5), (4.6) and (4.7)

Ψ+
11 → Ψ−11, Φ+

21 → Φ−21, Ψ+
21 → Ψ−21, (4.12)

with

Ψ−11(r, θ, t) = r

(
sin θ − i

Ω

ω
cos θ

)
eiωt, (4.13)

Φ−21(r, θ, t) = − 1
4
iωr2eiωt, (4.14)

Ψ−21(r, θ, t) =
1

2

(
r2Ω − Γ

2π

)
eiωt + g−2,ω(r)ei(2θ+ωt) + g2,ω(r)ei(−2θ+ωt), (4.15)

since from (4.8) it may be verified that gn,−ω(r) = g−n,ω(r) providing that they have
a similar behaviour when r → ∞, which is the case here (Ford & Llewellyn Smith
1999).

Now, if the two waves have the same amplitude δ, their simultaneous effects on
the vortex are given by U 1 = U+

1 +U−1 . The result is obtained by adding respectively
(4.5), (4.6) and (4.7), to (4.13), (4.14) and (4.15). Taking the real part of the resulting
fields, we get

Ψ11(r, θ, t) = 0, (4.16)

Φ21(r, θ, t) = 1
2
ωr2 sin(ωt), (4.17)

Ψ21(r, θ, t) =

(
r2Ω − Γ

2π

)
cos(ωt) + 2g2,ω(r) cos(2θ − ωt) + 2g−2,ω(r) cos(2θ + ωt).

(4.18)

As expected, U 11(x, t) = 0 (everywhere), so that the motion of translation is annihi-
lated by superposing the second wave.

4.4. Parametric resonances in the vortex core

The behaviour of the field

U 21 = ∇Φ21 + ez × ∇Ψ21 (4.19)
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may be evaluated at r = 0 without knowing exactly the functions g2,ω(r) and g−2,ω(r),
since their behaviour when r → 0 is easily shown to be (Drazin & Reid 1981):

g±2,ω(r) ∼ A±2r
2, (4.20)

except when the critical layer is located at the origin (Bassom & Gilbert 1998).
But this case has been excluded here, by imposing the condition (4.9). A±2 are real
numbers depending on ω, that have to be determined from the general solution of the
Rayleigh equation (4.8). From (4.17) and (4.18), this is however sufficient to conclude
that U 21 = 0 at r = 0, so that at O(δM2), the core of the vortex is a stagnation point.

Let us now evaluate the velocity gradient tensor of the flow in the vortex core
x0 = 0. Expressing the result in Cartesian coordinates, we get

L(x0, t) = L0 + δM2L21(t) + O(δ2), (4.21)

with

L0 =
1

2

(
0 −1

1 0

)
, (4.22)

and

L21(t) =

(
ω sin(ωt) − cos(ωt)

cos(ωt) ω sin(ωt)

)
+

(
α sin(ωt) β cos(ωt)

β cos(ωt) −α sin(ωt)

)
, (4.23)

where α = 4(A−2 − A2) and β = 4(A2 + A−2). The first term on the right-hand side
of (4.23) may be recognized as a pure circular compression effect, see (3.6). The
second is an irrotational periodic straining field, which may occur in incompressible
flows: the second term in the right-hand side of (3.16) is recovered with α = ω/2 and
β = 1

2
; the case α = β corresponds to a circular vortex in a rotating strain (Le Dizès

2000 a, b); and the case α = 0 has been solved by Craik & Allen (1992) for an
incompressible rotating column of fluid.

At order δM2, the stability properties of the vortex core under the effect of the
waves will be given by solving the Hill–Schrödinger equation

d2q

dt2
+ {Q0 + δM2Q21(t)}q = 0, (4.24)

where Q0 = µ2 and Q21(t) is given by

Q21(t) = 2µ2

(
µ2 + 1− ω2

2

)
cos(ωt)

+16µ2 A−2

1 + ω

(
µ2

2
− ω2 + 5

4
− ω

)
cos(1 + ω)t

+16µ2 A2

1− ω
(
µ2

2
− ω2 + 5

4
+ ω

)
cos(1− ω)t. (4.25)

Again we obtain here an almost-periodic potential when ω is irrational, but to order
δM2 the first parametric resonances may be completely determined by a multiple-
scale analysis, as performed previously. Details of the calculations are omitted for
brevity.

Since ω > 0 and 0 < µ < 1, it is clear that instability cannot happen unless

0 < ω < 3. (4.26)

The first resonance arises when 0 < ω < 2 and corresponds to the pure compression
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term of the flow, i.e. the first term on the right-hand side of (4.25): the perturbation
grows exponentially with growth rate

σ = δM2ω

4

(
1− ω2

4

)
. (4.27)

The two following resonances arise from the irrotational straining part of the flow.
One of them exists when 0 < ω < 1, and the growth rate of the instabilities is given
by

σ = δM2 |A−2|
4

(ω + 3)2. (4.28)

Finally, the last resonance arises when 0 < ω < 3, with growth rate:

σ = δM2 |A2|
4

(ω − 3)2. (4.29)

Thus, without knowing exactly the values of A±2, we may first conclude that
a vortex with two incident waves is always unstable to three-dimensional short-
wavelength instabilities when 0 < ω < 2, since (4.27) is independent of A±2, and thus
independent of the velocity distribution in the vortex. Furthermore, it is clear that
in a smooth vortex, we expect that A±2 6= 0, so that both instabilities described by
(4.28) and (4.29) should occur respectively when 0 < ω < 1 and 0 < ω < 3. If ω is in
a range where various resonances occur, the most amplified instability will dominate
of course.

4.5. Application to a Rankine vortex

For a Rankine vortex, i.e. the potential vortex outside a core of finite circular size and
constant vorticity, corrections coming from the interaction of acoustic waves may be
completely determined. The vortex is defined in dimensionless form by

Ω(r) =

{
1
2
, r < 1

r−2/2, r > 1,
(4.30)

so that the core radius and vorticity are unity.
As shown in Appendix B (see also Saffman 1992), and providing that

ω 6= 1
2
, ω 6= 1, (4.31)

the functions g±2,ω(r), solutions of the radial Rayleigh equation, may be calculated
explicitly, and are given by

g±2,ω(r) =

{
A±2r

2, r < 1

B±2r
−2 + C±2r

2, r > 1,
(4.32)

where C±2 are constants that are determined from matching conditions with the outer
solution when r → ∞. They are given by C2 = −ω/8 and C−2 = ω/8 (Ford &
Llewellyn Smith 1999). As a consequence, we get from Appendix B

A2 = −ω
4

ω − 1

2ω − 1
, A−2 =

ω

4

ω + 1

2ω + 1
. (4.33)

The values of B±2 may be deduced from the relation A±2 = B±2 +C±2 (Appendix B).
Recall that the resonance 0 < ω < 2 corresponding to the pure compression effect

is universal and insensitive to the vorticity distribution, since (4.27) is independent of
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Figure 4. Rescaled growth rates s = σ/(δM2) of the various principal parametric instabilities for
a Rankine vortex with two opposite incident waves, given by (4.27), (4.34) and (4.35). Note that
(4.35) diverges at ω = 1

2
.

A±2. On the other hand, the growth rates (4.28) and (4.29) of the straining resonances
are now respectively, taking (4.33) into account,

σ = δM2 ω

16

∣∣∣∣ ω + 1

2ω + 1

∣∣∣∣ (ω + 3)2, (4.34)

valid when 0 < ω < 1, and

σ = δM2 ω

16

∣∣∣∣ ω − 1

2ω − 1

∣∣∣∣ (ω − 3)2, (4.35)

valid when 0 < ω < 3. The interactions between resonances arising when ω = 1
2

or
ω = 1 are excluded (see Appendix B). Results are plotted on figure 4.

5. Discussion and conclusion
The geometrical optics stability theory elaborated by Eckhoff (1981) and Lif-

schitz & Hameiri (1991) has been used to show the existence of short-wavelength
three-dimensional parametric instabilities in time-periodic circular vortex cores of an
inviscid ideal gas.

The most important application of the present results is that a circular vortex may
be destabilized by a couple of plane acoustic waves with long wavelength, propagating
in opposite directions. Based on the asymptotic solution of Ford & Llewellyn Smith
(1999) for a single wave, it has been proved that the superposition of two waves leaves
the position the vortex core steady, and perturbs the vortex locally by pure circular
compressions and irrotational strains. For a smooth vortex with unit core vorticity,
the pure compression part of the perturbation gives rise to a universal parametric
resonance when 0 < ω < 2, with growth rate independent of the velocity distribution
in the vortex. The straining field operates generally when 0 < ω < 3, but the growth
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rate now depends on the structure of the vortex. In the case of a Rankine vortex,
characterization of the various resonances has been carried out. In each case, the
growth rates scale with δM2, where δ is the dimensionless wave amplitude, and M
the characteristic Mach number of the vortex.

In a medium at rest, Broadbent & Moore (1979) showed that a Rankine vortex
is unstable to two-dimensional acoustic modes, with growth rates scaling as M4, so
that the three-dimensional parametric resonances may be more dangerous, providing
that δ > M2. In an incompressible framework, the stability of a Rankine vortex
subjected to steady external strains has been determined by normal mode methods
(Tsai & Widnall 1976; Eloy & Le Dizès 2000). As expected, the resulting growth rates
at large wavenumber converge to the value given by the geometrical optics stability
theory (Le Dizès & Eloy 1999), a situation encountered in many other circumstances
(Leibovich & Stewartson 1983; Bayly 1988; Sipp et al. 1999; Le Duc & Leblanc
1999). In the present case, a normal mode approach could be used to explore the
stability of compressed vortices. However, the situation is much more complex here
because difficulties arise from the fact that the basic flow is compressible and unsteady.
Viscosity has not been taken into account in the present analysis. In an unbounded
flow, viscosity is responsible for a pure volumic effect which leads to a small damping
of the instabilities, providing that the Reynolds number is sufficiently high.

To our knowledge, the three-dimensional destabilization of a vortex by acoustic
waves has never been observed, neither experimentally nor numerically. Generally, the
vortex interacts with a single acoustic wave, and measurements of scattered acoustic
fields are performed with various experimental techniques (Lund & Rojas 1989;
Dernoncourt et al. 1998; Labbé & Pinton 1998; Oljaca et al. 1998; Manneville et al.
1999). From the results derived in the present study, it is not obvious that a single
wave may destabilize a vortex since the vortex core moves periodically, so that the
vortex core is no longer a stagnation point. Nevertheless, and to conclude, we might
imagine interesting applications of the mechanisms of parametric resonance exposed
here, such as the destabilization of strong cyclonic atmospheric vortices by a pair of
acoustic waves.

I am particularly grateful to A. Le Duc for very stimulating exchanges about
short-wavelength instabilities in compressible flows. Constructive criticisms of the
anonymous Referees are also greatly acknowledged. This work has been partly
carried out at Ecole Centrale de Lyon, and has benefited from discussions with L. Le
Penven and J. Scott.

Appendix A. Parametric instabilities for axial compressions

A.1. Conditions of resonances

We look for the solution of (3.19) with Q0 = µ2 and Q1(t) given by (3.18). The solution
is sought in the multiple-scale form (Bender & Orszag 1978):

q(x0, t) = q0(t, τ) + δq1(t, τ) + O(δ2), τ = δt, (A 1)

where τ is a slow time scale. Suppose that a resonance occurs when µ = µ0. Near this
resonance, we have

µ = µ0 + δµ1 + O(δ2). (A 2)
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From (3.18), we get, up to order δ,

∂2q0

∂t2
+ µ2

0q0 = 0, (A 3)

∂2q1

∂t2
+ µ2

0q1 = −2
∂2q0

∂t∂τ
− 2µ0µ1q0 − Q1q0. (A 4)

The solution of (A 3) is

q0(t, τ) = A(τ)eiµ0t + c.c., (A 5)

and the forcing terms on the right-hand side of (A 4) are respectively

2
∂2q0

∂t∂τ
+ 2µ0µ1q0 = 2µ0

(
i
dA

dτ
+ µ1A

)
eiµ0t + c.c., (A 6)

and

Q1q0 =
µ2

0

2
A

{(
1 + µ2

0 − ω2

2

)(
ei(µ0+ω)t + ei(µ0−ω)t

)
+

(
µ2

0

2
− ω2 + 5

4
− ω

)(
ei(µ0+ω+1)t + ei(µ0−ω−1)t

)
+

(
µ2

0

2
− ω2 + 5

4
+ ω

)(
ei(µ0−ω+1)t + ei(µ0+ω−1)t

)}
+ c.c. (A 7)

Thus the solution of (A 4) is bounded except for various resonances arising when the
arguments of the complex exponential terms in (A 7) are identical to µ0, corresponding
to the homogeneous solution (A 5). Taking into account that 0 < µ < 1 and ω > 0,
the various conditions for resonance are

ω = 2µ0, 1± ω = 2µ0, ω − 1 = 2µ0. (A 8)

Inside those bands, some particular cases may arise that correspond to interaction
between various bands. Some details are given below.

We recall that the case µ = 0 (two-dimensional perturbations) is stable. The case
µ = 1 (spanwise wave vectors) which requires a special analysis is also studied. Since
τ = δt, note that the growth rates s given below have to be multiplied by δ to get the
physical growth rates: σ = δs.

A.2. General resonances

Case ω = 2µ0, with µ0 6= 1
2

and µ0 6= 1
4
. Elimination of secular terms yields the

following amplitude equation:

dA

dτ
= i(µ1A+ sA∗), s =

ω

8

(
1− ω2

4

)
, (A 9)

the linearly independent solutions of which are

A±(τ) = exp{±τ(s2 − µ2
1)

1/2}. (A 10)

Exponential instability occurs when |µ1| < |s|. The maximum growth rate s is reached
when µ1 = 0 and 0 < ω < 2. This case is similar to the circular compressions.

Case 1± ω = 2µ0 with µ0 6= 1
4
. The amplitude equations are

dA

dτ
= i(µ1A− s±A∗), s± =

1

64
(1± ω)(3± ω)2. (A 11)
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Exponential instabilities occur when |µ1| < |s|. The maximum growth rates s± are
reached when µ1 = 0 and 0 < ω < 1.

Case ω − 1 = 2µ0. The amplitude equation is

dA

dτ
= i(µ1A− sA∗), s =

1

64
(ω − 1)(ω − 3)2. (A 12)

Exponential instability occurs when |µ1| < |s|. The maximum growth rate s is reached
when µ1 = 0 and 1 < ω < 3.

A.3. Particular cases

Case ω = 1
2

and µ0 = 1
4
. This is a manifestation of the interaction between two of the

resonances described above: ω = 2µ0 and 1−ω = 2µ0. In this case, the secular terms
vanish when the envelope satisfies

dA

dτ
= i

(
µ1A+

5

512
A∗
)
. (A 13)

Exponential instability occurs when |µ1| < 5
512

. The maximum growth rate

s =
5

512
(A 14)

is reached when µ1 = 0. Then we can see that the growth rates obtained previously
for the resonances ω = 2µ0 and 1− ω = 2µ0 are discontinuous when ω = 1

2
.

Case ω = 1 and µ0 = 1
2
. This case is very particular, because the amplitude equation

is
dA

dτ
= i

{
3

32
(A∗ − A) + µ1A

}
, (A 15)

the linearly independent solutions of which are

A±(τ) = exp

{
±τ√µ1

(
3

16
− µ1

)1/2
}
. (A 16)

Exponential instability occurs when 0 < µ1 <
3
16

. The maximum growth rate

s =
3

32
(A 17)

is reached for µ1 = 3/32. Note that this growth rate matches the growth rate obtained
for ω = 2µ0 when ω → 1.

A.4. Spanwise wave vectors

When µ = 1, the Hill–Schrödinger equation is formally no longer valid. Nevertheless,
following the treatment by Leblanc & Le Penven (1999), this case may be also studied
by noting that the transport equation reduces to a 2 × 2 system independent of the
wave vector:

dṽ

dt
= −L ṽ, (A 18)

where ṽ(x0, t) is the projection of
√
Ra on the (ex, ey)-plane.

This system may be reduced to a single equation by taking the time derivative for
the first component ũ = ṽ · ex. To order δ, this yields the single equation

d2ũ

dt2
+ δω sin(ωt)

dũ

dt
+
{

1
4

+ δ
(

1
2

+ ω2
)

cos(ωt)
}
ũ = 0, (A 19)
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which may be studied directly by a standard multiple-scale analysis, or by noting that
it may be rewritten in the standard Hill form with a suitable change of variables.

Indeed,

d2ũ

dt2
+ a

dũ

dt
+ bũ = 0, (A 20)

may be transform into

d2q̃

dt2
+ Q(x0, t)q̃ = 0, (A 21)

by the following change of variables (Magnus & Winkler 1966):

q̃ = eA/2ũ, a =
dA

dt
, Q = −1

2

da

dt
− a2

4
+ b, (A 22)

giving, in our case,

Q(x0, t) = 1
4

+ 1
2
δ(ω2 + 1) cos(ωt) + O(δ2). (A 23)

Clearly, from the theory of parametric resonance, or by a standard multiple-scale
analysis (Bender & Orszag 1978), solutions are periodic, except near the first resonance
ω = 1 for which the solution grows exponentially with growth rate

σ = δ/2. (A 24)

This growth rate matches the one obtained previously in the case 1 + ω = 2µ when
µ → 1. This result is in accordance with the analysis of Leblanc & Le Penven
(1999) who showed that this resonance also occurs when compressing periodically an
elliptical vortex.

Appendix B. Solution of Rayleigh equation for the Rankine vortex
B.1. Jump conditions

The Rankine vortex presents a discontinuous distribution of vorticity, so that solution
of the Rayleigh equation has to satisfy jump conditions at the interface r = 1. For an
incompressible inviscid fluid, the linear two-dimensional modes [û, v̂, p̂](r) exp i(nθ−ωt)
are solutions of the system (Drazin & Reid 1981; Saffman 1992)

i(nΩ − ω)û− 2Ωv̂ = −dp̂/dr, (B 1)

i(nΩ − ω)v̂ +Wû = −inp̂/r, (B 2)

dû/dr + û/r + inv̂/r = 0. (B 3)

For a homentropic flow, using dimensionless variables similar to those of Ford &
Llewellyn Smith (1999), density satisfies %̂(r) = γC2p̂(r).

With ψ̂(r) defined by û = −inψ̂/r and v̂ = dψ̂/dr, continuity of pressure at the
interface gives [

r(nΩ − ω)
dψ̂

dr
− nWψ̂

]±
= 0, (B 4)

where [f(r)]± = f(r → 1+)− f(r → 1−).
The interface being a material line, it may be shown that continuity of radial

velocity at the deformed interface implies[
ψ̂

nΩ − ω
]±

= 0. (B 5)
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B.2. Solution of the Rayleigh equation

It remains to solve Rayleigh equation (4.8) for ψ̂(r) on each side of the interface for
Rankine solution (4.30). Since the vorticity is constant, the critical layer r0 such that
nΩ(r0) = ω is regular, and the general solution is:

ψ̂(r) =

{
Arn, r < 1

Br−n + Crn, r > 1.
(B 6)

When ω 6= n/2, jump conditions (B 4) and (B 5) imply

A− B = C, A

(
1− 2sgn(n)

n− sgn(n)− 2ω

)
+ B = C. (B 7)

When C = 0 (no strain at infinity), the solution given for instance by Saffman (1992)
is recovered. System (B 7) admits a non-trivial solution when 2ω 6= n− sgn(n). It is

A =
n− 2ω

n− sgn(n)− 2ω
C, B =

sgn(n)

n− sgn(n)− 2ω
C. (B 8)

We assume here that C is given by conditions on ψ̂(r) when r →∞.
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